1
0
Fork 0

Change: Improved tree placement at worldgen

for real this time.
pull/13515/head
Susan 2025-02-08 22:35:16 +00:00
parent 1ed685b5c1
commit b0a4c5e188
1 changed files with 150 additions and 8 deletions

View File

@ -31,6 +31,9 @@
#include "table/clear_land.h" #include "table/clear_land.h"
#include "safeguards.h" #include "safeguards.h"
#include <cassert>
#include <cstdint>
#include <vector>
/** /**
* List of tree placer algorithm. * List of tree placer algorithm.
@ -57,6 +60,9 @@ uint8_t _trees_tick_ctr;
static const uint16_t DEFAULT_TREE_STEPS = 1000; ///< Default number of attempts for placing trees. static const uint16_t DEFAULT_TREE_STEPS = 1000; ///< Default number of attempts for placing trees.
static const uint16_t DEFAULT_RAINFOREST_TREE_STEPS = 15000; ///< Default number of attempts for placing extra trees at rainforest in tropic. static const uint16_t DEFAULT_RAINFOREST_TREE_STEPS = 15000; ///< Default number of attempts for placing extra trees at rainforest in tropic.
static const uint16_t EDITOR_TREE_DIV = 5; ///< Game editor tree generation divisor factor. static const uint16_t EDITOR_TREE_DIV = 5; ///< Game editor tree generation divisor factor.
static const double PHASE_DIVISOR = INT32_MAX / (M_PI * 2); ///< Valid values for the phase of blob harmonics are between 0 and Tau. we can get a value in the correct range from Random() by dividing the maximum possible value by the desired maximum, and then dividing the random value by the result.
static const uint16_t GROVE_RADIUS = 16; ///< Maximum radius of tree groups.
static const uint16_t GROVE_RESOLUTION = 16; ///< How many segments make up the tree group.
/** /**
* Tests if a tile can be converted to MP_TREES * Tests if a tile can be converted to MP_TREES
@ -178,6 +184,139 @@ static void PlaceTree(TileIndex tile, uint32_t r)
} }
} }
struct BlobHarmonic
{
int amplitude;
float phase;
int frequency;
};
struct BlobPosition
{
int x;
int y;
};
BlobPosition operator-(BlobPosition lhs, BlobPosition rhs)
{
int x = lhs.x - rhs.x;
int y = lhs.y - rhs.y;
return {x, y};
}
/**
* Creates a star-shaped[sic] polygon originating from (0, 0) as defined by the given harmonics.
*
* @param radius The maximum radius of the polygon. May be smaller, but will not be larger.
* @param harmonics a std::vector of the harmonics data.
* @param noOfSegments How many segments make up the polygon.
*/
std::vector<BlobPosition> createStarShapedPolygon(const int radius, std::vector<BlobHarmonic> harmonics, const int noOfSegments)
{
std::vector<BlobPosition> result;
float theta = 0;
auto step = (M_PI * 2) / noOfSegments; //tau best circle constant
//divide a circle into a number of equally spaced divisions
for(int i = 0; i < noOfSegments; ++i)
{
float deviation = 0;
//add up the values of each harmonic at this segment
std::for_each(harmonics.begin(), harmonics.end(), [&deviation, theta](BlobHarmonic &harmonic) {
deviation += sin((theta + harmonic.phase) * harmonic.frequency) * harmonic.amplitude;
});
//smooth out changes
auto adjustedRadius = (radius / 2.0) + (deviation / 2);
// add to the final polygon
BlobPosition vertex;
vertex.x = cos(theta) * adjustedRadius;
vertex.y = sin(theta) * adjustedRadius;
result.push_back(vertex);
//proceed to the next segment
theta += step;
}
return result;
}
/**
* Creates a random star-shaped[sic] polygon originating from (0, 0).
*
* @param radius The maximum radius of the blob. May be smaller, but will not be larger.
* @param noOfSegments How many segments make up the blob.
*/
std::vector<BlobPosition> createRandomStarShapedPolygon(const int radius, const int noOfSegments)
{
std::vector<BlobHarmonic> harmonics;
// these values are ones i found in my testing that result in suitable- looking polygons that did not self-intersect and fit within a square of radius * radius dimensions.
harmonics.push_back(BlobHarmonic(radius / 2, Random() / PHASE_DIVISOR, 1));
harmonics.push_back(BlobHarmonic(radius / 4, Random() / PHASE_DIVISOR, 2));
harmonics.push_back(BlobHarmonic(radius / 8, Random() / PHASE_DIVISOR, 3));
harmonics.push_back(BlobHarmonic(radius / 16, Random() / PHASE_DIVISOR, 4));
return createStarShapedPolygon(radius, harmonics, noOfSegments);
}
/**
* Returns true if the given coordinates lie within a triangle.
*
* @param x x.
* @param y y.
* @param triangle the triangle to check against, a std::vector of three BlobPositions.
*/
bool pointInTriangle(const int x, const int y, std::vector<BlobPosition> triangle)
{
assert(triangle.size() == 3);
const auto vertex0 = triangle.at(0);
const auto vertex1 = triangle.at(1);
const auto vertex2 = triangle.at(2);
const int s = ((vertex0.x - vertex2.x) * (y - vertex2.y)) - ((vertex0.y - vertex2.y) * (x - vertex2.x));
const int t = ((vertex1.x - vertex0.x) * (y - vertex0.y)) - ((vertex1.y - vertex0.y) * (x - vertex0.x));
if ((s < 0) != (t < 0) && (s != 0 && t != 0))
{
return false;
}
const int d = (vertex2.x - vertex1.x) * (y - vertex1.y) - (vertex2.y - vertex1.y) * (x - vertex1.x);
return (d < 0) == (s + t <= 0);
}
/**
* Returns true if the given coordinates lie within a star shaped[sic] polygon.
* breaks the polygon into a series of triangles around the centre point (0, 0) and then tests the coordinates against each triangle until a match is found [or not].
*
* There might be a better way to do this.
*
* @param x x.
* @param y y.
* @param polygon the polygon to check against, a std::vector of multiple BlobPositions.
*/
bool pointInStarShapedPolygon(int x, int y, std::vector<BlobPosition> polygon)
{
for(int i = 0; i < polygon.size(); ++i)
{
std::vector<BlobPosition> triangle;
triangle.push_back(polygon.at(i));
triangle.push_back(polygon.at((i + 1) % polygon.size()));
triangle.push_back({0, 0});
if (pointInTriangle(x, y, triangle))
{
return true;
}
}
return false;
}
/** /**
* Creates a number of tree groups. * Creates a number of tree groups.
* The number of trees in each group depends on how many trees are actually placed around the given tile. * The number of trees in each group depends on how many trees are actually placed around the given tile.
@ -189,19 +328,22 @@ static void PlaceTreeGroups(uint num_groups)
do { do {
TileIndex center_tile = RandomTile(); TileIndex center_tile = RandomTile();
for (uint i = 0; i < DEFAULT_TREE_STEPS; i++) { std::vector<BlobPosition> grove = createRandomStarShapedPolygon(GROVE_RADIUS, GROVE_RESOLUTION);
uint32_t r = Random();
int x = GB(r, 0, 5) - 16;
int y = GB(r, 8, 5) - 16;
uint dist = abs(x) + abs(y);
TileIndex cur_tile = TileAddWrap(center_tile, x, y);
for (uint i = 0; i < DEFAULT_TREE_STEPS; i++) {
IncreaseGeneratingWorldProgress(GWP_TREE); IncreaseGeneratingWorldProgress(GWP_TREE);
if (cur_tile != INVALID_TILE && dist <= 13 && CanPlantTreesOnTile(cur_tile, true)) { uint32_t r = Random();
int x = GB(r, 0, 5) - GROVE_RADIUS;
int y = GB(r, 8, 5) - GROVE_RADIUS;
TileIndex cur_tile = TileAddWrap(center_tile, x, y);
if (cur_tile != INVALID_TILE && CanPlantTreesOnTile(cur_tile, true)) {
if(pointInStarShapedPolygon(x, y, grove)) {
PlaceTree(cur_tile, r); PlaceTree(cur_tile, r);
} }
} }
}
} while (--num_groups); } while (--num_groups);
} }