mirror of https://github.com/OpenTTD/OpenTTD
(svn r108) -Fix: anon-union problems on GCC2 compilers
parent
a770903df7
commit
99253905bb
158
queue.c
158
queue.c
|
@ -6,31 +6,31 @@ void Stack_Clear(Queue* q, bool free_values)
|
||||||
{
|
{
|
||||||
uint i;
|
uint i;
|
||||||
if (free_values)
|
if (free_values)
|
||||||
for (i=0;i<q->stack.size;i++)
|
for (i=0;i<q->data.stack.size;i++)
|
||||||
free(q->stack.elements[i]);
|
free(q->data.stack.elements[i]);
|
||||||
q->stack.size = 0;
|
q->data.stack.size = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Stack_Free(Queue* q, bool free_values)
|
void Stack_Free(Queue* q, bool free_values)
|
||||||
{
|
{
|
||||||
q->clear(q, free_values);
|
q->clear(q, free_values);
|
||||||
free(q->stack.elements);
|
free(q->data.stack.elements);
|
||||||
if (q->freeq)
|
if (q->freeq)
|
||||||
free(q);
|
free(q);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Stack_Push(Queue* q, void* item, int priority) {
|
bool Stack_Push(Queue* q, void* item, int priority) {
|
||||||
if (q->stack.size == q->stack.max_size)
|
if (q->data.stack.size == q->data.stack.max_size)
|
||||||
return false;
|
return false;
|
||||||
q->stack.elements[q->stack.size++] = item;
|
q->data.stack.elements[q->data.stack.size++] = item;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void* Stack_Pop(Queue* q) {
|
void* Stack_Pop(Queue* q) {
|
||||||
void* result;
|
void* result;
|
||||||
if (q->stack.size == 0)
|
if (q->data.stack.size == 0)
|
||||||
return NULL;
|
return NULL;
|
||||||
result = q->stack.elements[--q->stack.size];
|
result = q->data.stack.elements[--q->data.stack.size];
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -46,9 +46,9 @@ Queue* init_stack(Queue* q, uint max_size) {
|
||||||
q->del = Stack_Delete;
|
q->del = Stack_Delete;
|
||||||
q->clear = Stack_Clear;
|
q->clear = Stack_Clear;
|
||||||
q->free = Stack_Free;
|
q->free = Stack_Free;
|
||||||
q->stack.max_size = max_size;
|
q->data.stack.max_size = max_size;
|
||||||
q->stack.size = 0;
|
q->data.stack.size = 0;
|
||||||
q->stack.elements = malloc(max_size * sizeof(void*));
|
q->data.stack.elements = malloc(max_size * sizeof(void*));
|
||||||
q->freeq = false;
|
q->freeq = false;
|
||||||
return q;
|
return q;
|
||||||
}
|
}
|
||||||
|
@ -69,43 +69,43 @@ void Fifo_Clear(Queue* q, bool free_values)
|
||||||
{
|
{
|
||||||
uint head, tail;
|
uint head, tail;
|
||||||
if (free_values) {
|
if (free_values) {
|
||||||
head = q->fifo.head;
|
head = q->data.fifo.head;
|
||||||
tail = q->fifo.tail; /* cache for speed */
|
tail = q->data.fifo.tail; /* cache for speed */
|
||||||
while (head != tail) {
|
while (head != tail) {
|
||||||
free(q->fifo.elements[tail]);
|
free(q->data.fifo.elements[tail]);
|
||||||
tail = (tail + 1) % q->fifo.max_size;
|
tail = (tail + 1) % q->data.fifo.max_size;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
q->fifo.head = q->fifo.tail = 0;
|
q->data.fifo.head = q->data.fifo.tail = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Fifo_Free(Queue* q, bool free_values)
|
void Fifo_Free(Queue* q, bool free_values)
|
||||||
{
|
{
|
||||||
q->clear(q, free_values);
|
q->clear(q, free_values);
|
||||||
free(q->fifo.elements);
|
free(q->data.fifo.elements);
|
||||||
if (q->freeq)
|
if (q->freeq)
|
||||||
free(q);
|
free(q);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Fifo_Push(Queue* q, void* item, int priority) {
|
bool Fifo_Push(Queue* q, void* item, int priority) {
|
||||||
uint next = (q->fifo.head + 1) % q->fifo.max_size;
|
uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
|
||||||
if (next == q->fifo.tail)
|
if (next == q->data.fifo.tail)
|
||||||
return false;
|
return false;
|
||||||
q->fifo.elements[q->fifo.head] = item;
|
q->data.fifo.elements[q->data.fifo.head] = item;
|
||||||
|
|
||||||
|
|
||||||
q->fifo.head = next;
|
q->data.fifo.head = next;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void* Fifo_Pop(Queue* q) {
|
void* Fifo_Pop(Queue* q) {
|
||||||
void* result;
|
void* result;
|
||||||
if (q->fifo.head == q->fifo.tail)
|
if (q->data.fifo.head == q->data.fifo.tail)
|
||||||
return NULL;
|
return NULL;
|
||||||
result = q->fifo.elements[q->fifo.tail];
|
result = q->data.fifo.elements[q->data.fifo.tail];
|
||||||
|
|
||||||
|
|
||||||
q->fifo.tail = (q->fifo.tail + 1) % q->fifo.max_size;
|
q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -120,10 +120,10 @@ Queue* init_fifo(Queue* q, uint max_size) {
|
||||||
q->del = Fifo_Delete;
|
q->del = Fifo_Delete;
|
||||||
q->clear = Fifo_Clear;
|
q->clear = Fifo_Clear;
|
||||||
q->free = Fifo_Free;
|
q->free = Fifo_Free;
|
||||||
q->fifo.max_size = max_size;
|
q->data.fifo.max_size = max_size;
|
||||||
q->fifo.head = 0;
|
q->data.fifo.head = 0;
|
||||||
q->fifo.tail = 0;
|
q->data.fifo.tail = 0;
|
||||||
q->fifo.elements = malloc(max_size * sizeof(void*));
|
q->data.fifo.elements = malloc(max_size * sizeof(void*));
|
||||||
q->freeq = false;
|
q->freeq = false;
|
||||||
return q;
|
return q;
|
||||||
}
|
}
|
||||||
|
@ -142,7 +142,7 @@ Queue* new_Fifo(uint max_size)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
void InsSort_Clear(Queue* q, bool free_values) {
|
void InsSort_Clear(Queue* q, bool free_values) {
|
||||||
InsSortNode* node = q->inssort.first;
|
InsSortNode* node = q->data.inssort.first;
|
||||||
InsSortNode* prev;
|
InsSortNode* prev;
|
||||||
while (node != NULL) {
|
while (node != NULL) {
|
||||||
if (free_values)
|
if (free_values)
|
||||||
|
@ -152,7 +152,7 @@ void InsSort_Clear(Queue* q, bool free_values) {
|
||||||
free(prev);
|
free(prev);
|
||||||
|
|
||||||
}
|
}
|
||||||
q->inssort.first = NULL;
|
q->data.inssort.first = NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
void InsSort_Free(Queue* q, bool free_values)
|
void InsSort_Free(Queue* q, bool free_values)
|
||||||
|
@ -167,11 +167,11 @@ bool InsSort_Push(Queue* q, void* item, int priority) {
|
||||||
if (newnode == NULL) return false;
|
if (newnode == NULL) return false;
|
||||||
newnode->item = item;
|
newnode->item = item;
|
||||||
newnode->priority = priority;
|
newnode->priority = priority;
|
||||||
if (q->inssort.first == NULL || q->inssort.first->priority >= priority) {
|
if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) {
|
||||||
newnode->next = q->inssort.first;
|
newnode->next = q->data.inssort.first;
|
||||||
q->inssort.first = newnode;
|
q->data.inssort.first = newnode;
|
||||||
} else {
|
} else {
|
||||||
InsSortNode* node = q->inssort.first;
|
InsSortNode* node = q->data.inssort.first;
|
||||||
while( node != NULL ) {
|
while( node != NULL ) {
|
||||||
if (node->next == NULL || node->next->priority >= priority) {
|
if (node->next == NULL || node->next->priority >= priority) {
|
||||||
newnode->next = node->next;
|
newnode->next = node->next;
|
||||||
|
@ -185,14 +185,14 @@ bool InsSort_Push(Queue* q, void* item, int priority) {
|
||||||
}
|
}
|
||||||
|
|
||||||
void* InsSort_Pop(Queue* q) {
|
void* InsSort_Pop(Queue* q) {
|
||||||
InsSortNode* node = q->inssort.first;
|
InsSortNode* node = q->data.inssort.first;
|
||||||
void* result;
|
void* result;
|
||||||
if (node == NULL)
|
if (node == NULL)
|
||||||
return NULL;
|
return NULL;
|
||||||
result = node->item;
|
result = node->item;
|
||||||
q->inssort.first = q->inssort.first->next;
|
q->data.inssort.first = q->data.inssort.first->next;
|
||||||
if (q->inssort.first)
|
if (q->data.inssort.first)
|
||||||
assert(q->inssort.first->priority >= node->priority);
|
assert(q->data.inssort.first->priority >= node->priority);
|
||||||
free(node);
|
free(node);
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -208,7 +208,7 @@ void init_InsSort(Queue* q) {
|
||||||
q->del = InsSort_Delete;
|
q->del = InsSort_Delete;
|
||||||
q->clear = InsSort_Clear;
|
q->clear = InsSort_Clear;
|
||||||
q->free = InsSort_Free;
|
q->free = InsSort_Free;
|
||||||
q->inssort.first = NULL;
|
q->data.inssort.first = NULL;
|
||||||
q->freeq = false;
|
q->freeq = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -231,16 +231,16 @@ Queue* new_InsSort() {
|
||||||
// To make our life easy, we make the next define
|
// To make our life easy, we make the next define
|
||||||
// Because Binary Heaps works with array from 1 to n,
|
// Because Binary Heaps works with array from 1 to n,
|
||||||
// and C with array from 0 to n-1, and we don't like typing
|
// and C with array from 0 to n-1, and we don't like typing
|
||||||
// q->binaryheap.elements[i-1] every time, we use this define.
|
// q->data.binaryheap.elements[i-1] every time, we use this define.
|
||||||
#define BIN_HEAP_ARR(i) q->binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
|
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
|
||||||
|
|
||||||
void BinaryHeap_Clear(Queue* q, bool free_values)
|
void BinaryHeap_Clear(Queue* q, bool free_values)
|
||||||
{
|
{
|
||||||
/* Free all items if needed and free all but the first blocks of
|
/* Free all items if needed and free all but the first blocks of
|
||||||
* memory */
|
* memory */
|
||||||
uint i,j;
|
uint i,j;
|
||||||
for (i=0;i<q->binaryheap.blocks;i++) {
|
for (i=0;i<q->data.binaryheap.blocks;i++) {
|
||||||
if (q->binaryheap.elements[i] == NULL) {
|
if (q->data.binaryheap.elements[i] == NULL) {
|
||||||
/* No more allocated blocks */
|
/* No more allocated blocks */
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -248,29 +248,29 @@ void BinaryHeap_Clear(Queue* q, bool free_values)
|
||||||
if (free_values)
|
if (free_values)
|
||||||
for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
|
for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
|
||||||
/* For every element in the block */
|
/* For every element in the block */
|
||||||
if ((q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
|
if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
|
||||||
&& (q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
|
&& (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
|
||||||
break; /* We're past the last element */
|
break; /* We're past the last element */
|
||||||
free(q->binaryheap.elements[i][j].item);
|
free(q->data.binaryheap.elements[i][j].item);
|
||||||
}
|
}
|
||||||
if (i != 0) {
|
if (i != 0) {
|
||||||
/* Leave the first block of memory alone */
|
/* Leave the first block of memory alone */
|
||||||
free(q->binaryheap.elements[i]);
|
free(q->data.binaryheap.elements[i]);
|
||||||
q->binaryheap.elements[i] = NULL;
|
q->data.binaryheap.elements[i] = NULL;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
q->binaryheap.size = 0;
|
q->data.binaryheap.size = 0;
|
||||||
q->binaryheap.blocks = 1;
|
q->data.binaryheap.blocks = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
void BinaryHeap_Free(Queue* q, bool free_values)
|
void BinaryHeap_Free(Queue* q, bool free_values)
|
||||||
{
|
{
|
||||||
uint i;
|
uint i;
|
||||||
q->clear(q, free_values);
|
q->clear(q, free_values);
|
||||||
for (i=0;i<q->binaryheap.blocks;i++) {
|
for (i=0;i<q->data.binaryheap.blocks;i++) {
|
||||||
if (q->binaryheap.elements[i] == NULL)
|
if (q->data.binaryheap.elements[i] == NULL)
|
||||||
break;
|
break;
|
||||||
free(q->binaryheap.elements[i]);
|
free(q->data.binaryheap.elements[i]);
|
||||||
}
|
}
|
||||||
if (q->freeq)
|
if (q->freeq)
|
||||||
free(q);
|
free(q);
|
||||||
|
@ -278,33 +278,33 @@ void BinaryHeap_Free(Queue* q, bool free_values)
|
||||||
|
|
||||||
bool BinaryHeap_Push(Queue* q, void* item, int priority) {
|
bool BinaryHeap_Push(Queue* q, void* item, int priority) {
|
||||||
#ifdef QUEUE_DEBUG
|
#ifdef QUEUE_DEBUG
|
||||||
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->binaryheap.size);
|
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
|
||||||
#endif
|
#endif
|
||||||
if (q->binaryheap.size == q->binaryheap.max_size)
|
if (q->data.binaryheap.size == q->data.binaryheap.max_size)
|
||||||
return false;
|
return false;
|
||||||
assert(q->binaryheap.size < q->binaryheap.max_size);
|
assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
|
||||||
|
|
||||||
if (q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
|
if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
|
||||||
/* The currently allocated blocks are full, allocate a new one */
|
/* The currently allocated blocks are full, allocate a new one */
|
||||||
assert((q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
|
assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
|
||||||
q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
|
q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
|
||||||
q->binaryheap.blocks++;
|
q->data.binaryheap.blocks++;
|
||||||
#ifdef QUEUE_DEBUG
|
#ifdef QUEUE_DEBUG
|
||||||
printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
|
printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
// Add the item at the end of the array
|
// Add the item at the end of the array
|
||||||
BIN_HEAP_ARR(q->binaryheap.size+1).priority = priority;
|
BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority;
|
||||||
BIN_HEAP_ARR(q->binaryheap.size+1).item = item;
|
BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item;
|
||||||
q->binaryheap.size++;
|
q->data.binaryheap.size++;
|
||||||
|
|
||||||
// Now we are going to check where it belongs. As long as the parent is
|
// Now we are going to check where it belongs. As long as the parent is
|
||||||
// bigger, we switch with the parent
|
// bigger, we switch with the parent
|
||||||
{
|
{
|
||||||
int i, j;
|
int i, j;
|
||||||
BinaryHeapNode temp;
|
BinaryHeapNode temp;
|
||||||
i = q->binaryheap.size;
|
i = q->data.binaryheap.size;
|
||||||
while (i > 1) {
|
while (i > 1) {
|
||||||
// Get the parent of this object (divide by 2)
|
// Get the parent of this object (divide by 2)
|
||||||
j = i / 2;
|
j = i / 2;
|
||||||
|
@ -327,20 +327,20 @@ bool BinaryHeap_Push(Queue* q, void* item, int priority) {
|
||||||
bool BinaryHeap_Delete(Queue* q, void* item, int priority)
|
bool BinaryHeap_Delete(Queue* q, void* item, int priority)
|
||||||
{
|
{
|
||||||
#ifdef QUEUE_DEBUG
|
#ifdef QUEUE_DEBUG
|
||||||
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->binaryheap.size);
|
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
|
||||||
#endif
|
#endif
|
||||||
uint i = 0;
|
uint i = 0;
|
||||||
// First, we try to find the item..
|
// First, we try to find the item..
|
||||||
do {
|
do {
|
||||||
if (BIN_HEAP_ARR(i+1).item == item) break;
|
if (BIN_HEAP_ARR(i+1).item == item) break;
|
||||||
i++;
|
i++;
|
||||||
} while (i < q->binaryheap.size);
|
} while (i < q->data.binaryheap.size);
|
||||||
// We did not find the item, so we return false
|
// We did not find the item, so we return false
|
||||||
if (i == q->binaryheap.size) return false;
|
if (i == q->data.binaryheap.size) return false;
|
||||||
|
|
||||||
// Now we put the last item over the current item while decreasing the size of the elements
|
// Now we put the last item over the current item while decreasing the size of the elements
|
||||||
q->binaryheap.size--;
|
q->data.binaryheap.size--;
|
||||||
BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->binaryheap.size+1);
|
BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1);
|
||||||
|
|
||||||
// Now the only thing we have to do, is resort it..
|
// Now the only thing we have to do, is resort it..
|
||||||
// On place i there is the item to be sorted.. let's start there
|
// On place i there is the item to be sorted.. let's start there
|
||||||
|
@ -354,14 +354,14 @@ bool BinaryHeap_Delete(Queue* q, void* item, int priority)
|
||||||
for (;;) {
|
for (;;) {
|
||||||
j = i;
|
j = i;
|
||||||
// Check if we have 2 childs
|
// Check if we have 2 childs
|
||||||
if (2*j+1 <= q->binaryheap.size) {
|
if (2*j+1 <= q->data.binaryheap.size) {
|
||||||
// Is this child smaller then the parent?
|
// Is this child smaller then the parent?
|
||||||
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
|
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
|
||||||
// Yes, we _need_ to use i here, not j, because we want to have the smallest child
|
// Yes, we _need_ to use i here, not j, because we want to have the smallest child
|
||||||
// This way we get that straight away!
|
// This way we get that straight away!
|
||||||
if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
|
if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
|
||||||
// Do we have one child?
|
// Do we have one child?
|
||||||
} else if (2*j <= q->binaryheap.size) {
|
} else if (2*j <= q->data.binaryheap.size) {
|
||||||
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
|
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -382,10 +382,10 @@ bool BinaryHeap_Delete(Queue* q, void* item, int priority)
|
||||||
|
|
||||||
void* BinaryHeap_Pop(Queue* q) {
|
void* BinaryHeap_Pop(Queue* q) {
|
||||||
#ifdef QUEUE_DEBUG
|
#ifdef QUEUE_DEBUG
|
||||||
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->binaryheap.size);
|
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
|
||||||
#endif
|
#endif
|
||||||
void* result;
|
void* result;
|
||||||
if (q->binaryheap.size == 0)
|
if (q->data.binaryheap.size == 0)
|
||||||
return NULL;
|
return NULL;
|
||||||
|
|
||||||
// The best item is always on top, so give that as result
|
// The best item is always on top, so give that as result
|
||||||
|
@ -404,13 +404,13 @@ void init_BinaryHeap(Queue* q, uint max_size)
|
||||||
q->del = BinaryHeap_Delete;
|
q->del = BinaryHeap_Delete;
|
||||||
q->clear = BinaryHeap_Clear;
|
q->clear = BinaryHeap_Clear;
|
||||||
q->free = BinaryHeap_Free;
|
q->free = BinaryHeap_Free;
|
||||||
q->binaryheap.max_size = max_size;
|
q->data.binaryheap.max_size = max_size;
|
||||||
q->binaryheap.size = 0;
|
q->data.binaryheap.size = 0;
|
||||||
// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
|
// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
|
||||||
// It autosizes when it runs out of memory
|
// It autosizes when it runs out of memory
|
||||||
q->binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
|
q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
|
||||||
q->binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
|
q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
|
||||||
q->binaryheap.blocks = 1;
|
q->data.binaryheap.blocks = 1;
|
||||||
q->freeq = false;
|
q->freeq = false;
|
||||||
#ifdef QUEUE_DEBUG
|
#ifdef QUEUE_DEBUG
|
||||||
printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));
|
printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));
|
||||||
|
|
3
queue.h
3
queue.h
|
@ -76,7 +76,8 @@ struct Queue{
|
||||||
uint blocks; /* The amount of blocks for which space is reserved in elements */
|
uint blocks; /* The amount of blocks for which space is reserved in elements */
|
||||||
BinaryHeapNode** elements;
|
BinaryHeapNode** elements;
|
||||||
} binaryheap;
|
} binaryheap;
|
||||||
};
|
} data;
|
||||||
|
|
||||||
/* If true, this struct will be free'd when the
|
/* If true, this struct will be free'd when the
|
||||||
* Queue is deleted. */
|
* Queue is deleted. */
|
||||||
bool freeq;
|
bool freeq;
|
||||||
|
|
Loading…
Reference in New Issue