forked from mirror/OpenTTD
(svn r18364) -Codechange: move the pathfinders and their related files into a separate directory
This commit is contained in:
577
src/pathfinder/npf/queue.cpp
Normal file
577
src/pathfinder/npf/queue.cpp
Normal file
@@ -0,0 +1,577 @@
|
||||
/* $Id$ */
|
||||
|
||||
/*
|
||||
* This file is part of OpenTTD.
|
||||
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
|
||||
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/** @file queue.cpp Implementation of the Queue/Hash. */
|
||||
|
||||
#include "../../stdafx.h"
|
||||
#include "../../core/alloc_func.hpp"
|
||||
#include "queue.h"
|
||||
|
||||
|
||||
/*
|
||||
* Insertion Sorter
|
||||
*/
|
||||
|
||||
static void InsSort_Clear(Queue *q, bool free_values)
|
||||
{
|
||||
InsSortNode *node = q->data.inssort.first;
|
||||
InsSortNode *prev;
|
||||
|
||||
while (node != NULL) {
|
||||
if (free_values) free(node->item);
|
||||
prev = node;
|
||||
node = node->next;
|
||||
free(prev);
|
||||
}
|
||||
q->data.inssort.first = NULL;
|
||||
}
|
||||
|
||||
static void InsSort_Free(Queue *q, bool free_values)
|
||||
{
|
||||
q->clear(q, free_values);
|
||||
}
|
||||
|
||||
static bool InsSort_Push(Queue *q, void *item, int priority)
|
||||
{
|
||||
InsSortNode *newnode = MallocT<InsSortNode>(1);
|
||||
|
||||
newnode->item = item;
|
||||
newnode->priority = priority;
|
||||
if (q->data.inssort.first == NULL ||
|
||||
q->data.inssort.first->priority >= priority) {
|
||||
newnode->next = q->data.inssort.first;
|
||||
q->data.inssort.first = newnode;
|
||||
} else {
|
||||
InsSortNode *node = q->data.inssort.first;
|
||||
while (node != NULL) {
|
||||
if (node->next == NULL || node->next->priority >= priority) {
|
||||
newnode->next = node->next;
|
||||
node->next = newnode;
|
||||
break;
|
||||
}
|
||||
node = node->next;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void *InsSort_Pop(Queue *q)
|
||||
{
|
||||
InsSortNode *node = q->data.inssort.first;
|
||||
void *result;
|
||||
|
||||
if (node == NULL) return NULL;
|
||||
result = node->item;
|
||||
q->data.inssort.first = q->data.inssort.first->next;
|
||||
assert(q->data.inssort.first == NULL || q->data.inssort.first->priority >= node->priority);
|
||||
free(node);
|
||||
return result;
|
||||
}
|
||||
|
||||
static bool InsSort_Delete(Queue *q, void *item, int priority)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
void init_InsSort(Queue *q)
|
||||
{
|
||||
q->push = InsSort_Push;
|
||||
q->pop = InsSort_Pop;
|
||||
q->del = InsSort_Delete;
|
||||
q->clear = InsSort_Clear;
|
||||
q->free = InsSort_Free;
|
||||
q->data.inssort.first = NULL;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Binary Heap
|
||||
* For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
|
||||
*/
|
||||
|
||||
#define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
|
||||
#define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE - 1)
|
||||
|
||||
/* To make our life easy, we make the next define
|
||||
* Because Binary Heaps works with array from 1 to n,
|
||||
* and C with array from 0 to n-1, and we don't like typing
|
||||
* q->data.binaryheap.elements[i - 1] every time, we use this define. */
|
||||
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i) - 1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i) - 1) & BINARY_HEAP_BLOCKSIZE_MASK]
|
||||
|
||||
static void BinaryHeap_Clear(Queue *q, bool free_values)
|
||||
{
|
||||
/* Free all items if needed and free all but the first blocks of memory */
|
||||
uint i;
|
||||
uint j;
|
||||
|
||||
for (i = 0; i < q->data.binaryheap.blocks; i++) {
|
||||
if (q->data.binaryheap.elements[i] == NULL) {
|
||||
/* No more allocated blocks */
|
||||
break;
|
||||
}
|
||||
/* For every allocated block */
|
||||
if (free_values) {
|
||||
for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
|
||||
/* For every element in the block */
|
||||
if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
|
||||
(q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
|
||||
break; // We're past the last element
|
||||
}
|
||||
free(q->data.binaryheap.elements[i][j].item);
|
||||
}
|
||||
}
|
||||
if (i != 0) {
|
||||
/* Leave the first block of memory alone */
|
||||
free(q->data.binaryheap.elements[i]);
|
||||
q->data.binaryheap.elements[i] = NULL;
|
||||
}
|
||||
}
|
||||
q->data.binaryheap.size = 0;
|
||||
q->data.binaryheap.blocks = 1;
|
||||
}
|
||||
|
||||
static void BinaryHeap_Free(Queue *q, bool free_values)
|
||||
{
|
||||
uint i;
|
||||
|
||||
q->clear(q, free_values);
|
||||
for (i = 0; i < q->data.binaryheap.blocks; i++) {
|
||||
if (q->data.binaryheap.elements[i] == NULL) break;
|
||||
free(q->data.binaryheap.elements[i]);
|
||||
}
|
||||
free(q->data.binaryheap.elements);
|
||||
}
|
||||
|
||||
static bool BinaryHeap_Push(Queue *q, void *item, int priority)
|
||||
{
|
||||
#ifdef QUEUE_DEBUG
|
||||
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
|
||||
#endif
|
||||
|
||||
if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false;
|
||||
assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
|
||||
|
||||
if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
|
||||
/* The currently allocated blocks are full, allocate a new one */
|
||||
assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
|
||||
q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
|
||||
q->data.binaryheap.blocks++;
|
||||
#ifdef QUEUE_DEBUG
|
||||
printf("[BinaryHeap] Increasing size of elements to %d nodes\n", q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Add the item at the end of the array */
|
||||
BIN_HEAP_ARR(q->data.binaryheap.size + 1).priority = priority;
|
||||
BIN_HEAP_ARR(q->data.binaryheap.size + 1).item = item;
|
||||
q->data.binaryheap.size++;
|
||||
|
||||
/* Now we are going to check where it belongs. As long as the parent is
|
||||
* bigger, we switch with the parent */
|
||||
{
|
||||
BinaryHeapNode temp;
|
||||
int i;
|
||||
int j;
|
||||
|
||||
i = q->data.binaryheap.size;
|
||||
while (i > 1) {
|
||||
/* Get the parent of this object (divide by 2) */
|
||||
j = i / 2;
|
||||
/* Is the parent bigger then the current, switch them */
|
||||
if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
|
||||
temp = BIN_HEAP_ARR(j);
|
||||
BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
|
||||
BIN_HEAP_ARR(i) = temp;
|
||||
i = j;
|
||||
} else {
|
||||
/* It is not, we're done! */
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool BinaryHeap_Delete(Queue *q, void *item, int priority)
|
||||
{
|
||||
uint i = 0;
|
||||
|
||||
#ifdef QUEUE_DEBUG
|
||||
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
|
||||
#endif
|
||||
|
||||
/* First, we try to find the item.. */
|
||||
do {
|
||||
if (BIN_HEAP_ARR(i + 1).item == item) break;
|
||||
i++;
|
||||
} while (i < q->data.binaryheap.size);
|
||||
/* We did not find the item, so we return false */
|
||||
if (i == q->data.binaryheap.size) return false;
|
||||
|
||||
/* Now we put the last item over the current item while decreasing the size of the elements */
|
||||
q->data.binaryheap.size--;
|
||||
BIN_HEAP_ARR(i + 1) = BIN_HEAP_ARR(q->data.binaryheap.size + 1);
|
||||
|
||||
/* Now the only thing we have to do, is resort it..
|
||||
* On place i there is the item to be sorted.. let's start there */
|
||||
{
|
||||
uint j;
|
||||
BinaryHeapNode temp;
|
||||
/* Because of the fact that Binary Heap uses array from 1 to n, we need to
|
||||
* increase i by 1
|
||||
*/
|
||||
i++;
|
||||
|
||||
for (;;) {
|
||||
j = i;
|
||||
/* Check if we have 2 childs */
|
||||
if (2 * j + 1 <= q->data.binaryheap.size) {
|
||||
/* Is this child smaller than the parent? */
|
||||
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
|
||||
/* Yes, we _need_ to use i here, not j, because we want to have the smallest child
|
||||
* This way we get that straight away! */
|
||||
if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2 * j + 1).priority) i = 2 * j + 1;
|
||||
/* Do we have one child? */
|
||||
} else if (2 * j <= q->data.binaryheap.size) {
|
||||
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
|
||||
}
|
||||
|
||||
/* One of our childs is smaller than we are, switch */
|
||||
if (i != j) {
|
||||
temp = BIN_HEAP_ARR(j);
|
||||
BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
|
||||
BIN_HEAP_ARR(i) = temp;
|
||||
} else {
|
||||
/* None of our childs is smaller, so we stay here.. stop :) */
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void *BinaryHeap_Pop(Queue *q)
|
||||
{
|
||||
void *result;
|
||||
|
||||
#ifdef QUEUE_DEBUG
|
||||
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
|
||||
#endif
|
||||
|
||||
if (q->data.binaryheap.size == 0) return NULL;
|
||||
|
||||
/* The best item is always on top, so give that as result */
|
||||
result = BIN_HEAP_ARR(1).item;
|
||||
/* And now we should get rid of this item... */
|
||||
BinaryHeap_Delete(q, BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void init_BinaryHeap(Queue *q, uint max_size)
|
||||
{
|
||||
assert(q != NULL);
|
||||
q->push = BinaryHeap_Push;
|
||||
q->pop = BinaryHeap_Pop;
|
||||
q->del = BinaryHeap_Delete;
|
||||
q->clear = BinaryHeap_Clear;
|
||||
q->free = BinaryHeap_Free;
|
||||
q->data.binaryheap.max_size = max_size;
|
||||
q->data.binaryheap.size = 0;
|
||||
/* We malloc memory in block of BINARY_HEAP_BLOCKSIZE
|
||||
* It autosizes when it runs out of memory */
|
||||
q->data.binaryheap.elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1);
|
||||
q->data.binaryheap.elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
|
||||
q->data.binaryheap.blocks = 1;
|
||||
#ifdef QUEUE_DEBUG
|
||||
printf("[BinaryHeap] Initial size of elements is %d nodes\n", BINARY_HEAP_BLOCKSIZE);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Because we don't want anyone else to bother with our defines */
|
||||
#undef BIN_HEAP_ARR
|
||||
|
||||
/*
|
||||
* Hash
|
||||
*/
|
||||
|
||||
void init_Hash(Hash *h, Hash_HashProc *hash, uint num_buckets)
|
||||
{
|
||||
/* Allocate space for the Hash, the buckets and the bucket flags */
|
||||
uint i;
|
||||
|
||||
assert(h != NULL);
|
||||
#ifdef HASH_DEBUG
|
||||
debug("Allocated hash: %p", h);
|
||||
#endif
|
||||
h->hash = hash;
|
||||
h->size = 0;
|
||||
h->num_buckets = num_buckets;
|
||||
h->buckets = (HashNode*)MallocT<byte>(num_buckets * (sizeof(*h->buckets) + sizeof(*h->buckets_in_use)));
|
||||
#ifdef HASH_DEBUG
|
||||
debug("Buckets = %p", h->buckets);
|
||||
#endif
|
||||
h->buckets_in_use = (bool*)(h->buckets + num_buckets);
|
||||
for (i = 0; i < num_buckets; i++) h->buckets_in_use[i] = false;
|
||||
}
|
||||
|
||||
|
||||
void delete_Hash(Hash *h, bool free_values)
|
||||
{
|
||||
uint i;
|
||||
|
||||
/* Iterate all buckets */
|
||||
for (i = 0; i < h->num_buckets; i++) {
|
||||
if (h->buckets_in_use[i]) {
|
||||
HashNode *node;
|
||||
|
||||
/* Free the first value */
|
||||
if (free_values) free(h->buckets[i].value);
|
||||
node = h->buckets[i].next;
|
||||
while (node != NULL) {
|
||||
HashNode *prev = node;
|
||||
|
||||
node = node->next;
|
||||
/* Free the value */
|
||||
if (free_values) free(prev->value);
|
||||
/* Free the node */
|
||||
free(prev);
|
||||
}
|
||||
}
|
||||
}
|
||||
free(h->buckets);
|
||||
/* No need to free buckets_in_use, it is always allocated in one
|
||||
* malloc with buckets */
|
||||
#ifdef HASH_DEBUG
|
||||
debug("Freeing Hash: %p", h);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef HASH_STATS
|
||||
static void stat_Hash(const Hash *h)
|
||||
{
|
||||
uint used_buckets = 0;
|
||||
uint max_collision = 0;
|
||||
uint max_usage = 0;
|
||||
uint usage[200];
|
||||
uint i;
|
||||
|
||||
for (i = 0; i < lengthof(usage); i++) usage[i] = 0;
|
||||
for (i = 0; i < h->num_buckets; i++) {
|
||||
uint collision = 0;
|
||||
if (h->buckets_in_use[i]) {
|
||||
const HashNode *node;
|
||||
|
||||
used_buckets++;
|
||||
for (node = &h->buckets[i]; node != NULL; node = node->next) collision++;
|
||||
if (collision > max_collision) max_collision = collision;
|
||||
}
|
||||
if (collision >= lengthof(usage)) collision = lengthof(usage) - 1;
|
||||
usage[collision]++;
|
||||
if (collision > 0 && usage[collision] >= max_usage) {
|
||||
max_usage = usage[collision];
|
||||
}
|
||||
}
|
||||
printf(
|
||||
"---\n"
|
||||
"Hash size: %d\n"
|
||||
"Nodes used: %d\n"
|
||||
"Non empty buckets: %d\n"
|
||||
"Max collision: %d\n",
|
||||
h->num_buckets, h->size, used_buckets, max_collision
|
||||
);
|
||||
printf("{ ");
|
||||
for (i = 0; i <= max_collision; i++) {
|
||||
if (usage[i] > 0) {
|
||||
printf("%d:%d ", i, usage[i]);
|
||||
#if 0
|
||||
if (i > 0) {
|
||||
uint j;
|
||||
|
||||
for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#');
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
printf ("}\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
void clear_Hash(Hash *h, bool free_values)
|
||||
{
|
||||
uint i;
|
||||
|
||||
#ifdef HASH_STATS
|
||||
if (h->size > 2000) stat_Hash(h);
|
||||
#endif
|
||||
|
||||
/* Iterate all buckets */
|
||||
for (i = 0; i < h->num_buckets; i++) {
|
||||
if (h->buckets_in_use[i]) {
|
||||
HashNode *node;
|
||||
|
||||
h->buckets_in_use[i] = false;
|
||||
/* Free the first value */
|
||||
if (free_values) free(h->buckets[i].value);
|
||||
node = h->buckets[i].next;
|
||||
while (node != NULL) {
|
||||
HashNode *prev = node;
|
||||
|
||||
node = node->next;
|
||||
if (free_values) free(prev->value);
|
||||
free(prev);
|
||||
}
|
||||
}
|
||||
}
|
||||
h->size = 0;
|
||||
}
|
||||
|
||||
/** Finds the node that that saves this key pair. If it is not
|
||||
* found, returns NULL. If it is found, *prev is set to the
|
||||
* node before the one found, or if the node found was the first in the bucket
|
||||
* to NULL. If it is not found, *prev is set to the last HashNode in the
|
||||
* bucket, or NULL if it is empty. prev can also be NULL, in which case it is
|
||||
* not used for output.
|
||||
*/
|
||||
static HashNode *Hash_FindNode(const Hash *h, uint key1, uint key2, HashNode** prev_out)
|
||||
{
|
||||
uint hash = h->hash(key1, key2);
|
||||
HashNode *result = NULL;
|
||||
|
||||
#ifdef HASH_DEBUG
|
||||
debug("Looking for %u, %u", key1, key2);
|
||||
#endif
|
||||
/* Check if the bucket is empty */
|
||||
if (!h->buckets_in_use[hash]) {
|
||||
if (prev_out != NULL) *prev_out = NULL;
|
||||
result = NULL;
|
||||
/* Check the first node specially */
|
||||
} else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
|
||||
/* Save the value */
|
||||
result = h->buckets + hash;
|
||||
if (prev_out != NULL) *prev_out = NULL;
|
||||
#ifdef HASH_DEBUG
|
||||
debug("Found in first node: %p", result);
|
||||
#endif
|
||||
/* Check all other nodes */
|
||||
} else {
|
||||
HashNode *prev = h->buckets + hash;
|
||||
HashNode *node;
|
||||
|
||||
for (node = prev->next; node != NULL; node = node->next) {
|
||||
if (node->key1 == key1 && node->key2 == key2) {
|
||||
/* Found it */
|
||||
result = node;
|
||||
#ifdef HASH_DEBUG
|
||||
debug("Found in other node: %p", result);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
prev = node;
|
||||
}
|
||||
if (prev_out != NULL) *prev_out = prev;
|
||||
}
|
||||
#ifdef HASH_DEBUG
|
||||
if (result == NULL) debug("Not found");
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
void *Hash_Delete(Hash *h, uint key1, uint key2)
|
||||
{
|
||||
void *result;
|
||||
HashNode *prev; // Used as output var for below function call
|
||||
HashNode *node = Hash_FindNode(h, key1, key2, &prev);
|
||||
|
||||
if (node == NULL) {
|
||||
/* not found */
|
||||
result = NULL;
|
||||
} else if (prev == NULL) {
|
||||
/* It is in the first node, we can't free that one, so we free
|
||||
* the next one instead (if there is any)*/
|
||||
/* Save the value */
|
||||
result = node->value;
|
||||
if (node->next != NULL) {
|
||||
HashNode *next = node->next;
|
||||
/* Copy the second to the first */
|
||||
*node = *next;
|
||||
/* Free the second */
|
||||
#ifndef NOFREE
|
||||
free(next);
|
||||
#endif
|
||||
} else {
|
||||
/* This was the last in this bucket
|
||||
* Mark it as empty */
|
||||
uint hash = h->hash(key1, key2);
|
||||
h->buckets_in_use[hash] = false;
|
||||
}
|
||||
} else {
|
||||
/* It is in another node
|
||||
* Save the value */
|
||||
result = node->value;
|
||||
/* Link previous and next nodes */
|
||||
prev->next = node->next;
|
||||
/* Free the node */
|
||||
#ifndef NOFREE
|
||||
free(node);
|
||||
#endif
|
||||
}
|
||||
if (result != NULL) h->size--;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
void *Hash_Set(Hash *h, uint key1, uint key2, void *value)
|
||||
{
|
||||
HashNode *prev;
|
||||
HashNode *node = Hash_FindNode(h, key1, key2, &prev);
|
||||
|
||||
if (node != NULL) {
|
||||
/* Found it */
|
||||
void *result = node->value;
|
||||
|
||||
node->value = value;
|
||||
return result;
|
||||
}
|
||||
/* It is not yet present, let's add it */
|
||||
if (prev == NULL) {
|
||||
/* The bucket is still empty */
|
||||
uint hash = h->hash(key1, key2);
|
||||
h->buckets_in_use[hash] = true;
|
||||
node = h->buckets + hash;
|
||||
} else {
|
||||
/* Add it after prev */
|
||||
node = MallocT<HashNode>(1);
|
||||
prev->next = node;
|
||||
}
|
||||
node->next = NULL;
|
||||
node->key1 = key1;
|
||||
node->key2 = key2;
|
||||
node->value = value;
|
||||
h->size++;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void *Hash_Get(const Hash *h, uint key1, uint key2)
|
||||
{
|
||||
HashNode *node = Hash_FindNode(h, key1, key2, NULL);
|
||||
|
||||
#ifdef HASH_DEBUG
|
||||
debug("Found node: %p", node);
|
||||
#endif
|
||||
return (node != NULL) ? node->value : NULL;
|
||||
}
|
||||
|
||||
uint Hash_Size(const Hash *h)
|
||||
{
|
||||
return h->size;
|
||||
}
|
Reference in New Issue
Block a user