forked from mirror/OpenTTD
(svn r2635) Fix: [ntp/misc] Improve the old pathfinder. Changed it to A* instead of Dijkstra.
- Benchmark shows that NTP is now around 10x faster than NPF. - Made IsTunnelTile macro to determine if a tile is a tunnel. - Added some useful debugging functions for making tiles red / getting accurate timestamps. - Remove old depot finding algorithm. - Disable warning for signed/unsigned comparisons.
This commit is contained in:
416
pathfind.c
416
pathfind.c
@@ -45,7 +45,6 @@ static bool TPFSetTileBit(TrackPathFinder *tpf, TileIndex tile, int dir)
|
||||
/* allocate a link. if out of links, handle this by returning
|
||||
* that a tile was already visisted. */
|
||||
if (tpf->num_links_left == 0) {
|
||||
DEBUG(misc, 4) ("[NTP] no links left\n");
|
||||
return false;
|
||||
}
|
||||
tpf->num_links_left--;
|
||||
@@ -84,7 +83,6 @@ static bool TPFSetTileBit(TrackPathFinder *tpf, TileIndex tile, int dir)
|
||||
/* get here if we need to add a new link to link,
|
||||
* first, allocate a new link, in the same way as before */
|
||||
if (tpf->num_links_left == 0) {
|
||||
DEBUG(misc, 4)("[NTP] no links left\n");
|
||||
return false;
|
||||
}
|
||||
tpf->num_links_left--;
|
||||
@@ -125,11 +123,6 @@ static const byte _otherdir_mask[4] = {
|
||||
0x2A,
|
||||
};
|
||||
|
||||
#ifdef DEBUG_TILE_PUSH
|
||||
extern void dbg_push_tile(TileIndex tile, int track);
|
||||
extern void dbg_pop_tile();
|
||||
#endif
|
||||
|
||||
static void TPFMode2(TrackPathFinder *tpf, TileIndex tile, int direction)
|
||||
{
|
||||
uint bits;
|
||||
@@ -198,15 +191,9 @@ static void TPFMode2(TrackPathFinder *tpf, TileIndex tile, int direction)
|
||||
continue_here:;
|
||||
tpf->the_dir = HASBIT(_otherdir_mask[direction],i) ? (i+8) : i;
|
||||
|
||||
#ifdef DEBUG_TILE_PUSH
|
||||
dbg_push_tile(tile, tpf->the_dir);
|
||||
#endif
|
||||
if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, NULL)) {
|
||||
TPFMode2(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
||||
}
|
||||
#ifdef DEBUG_TILE_PUSH
|
||||
dbg_pop_tile();
|
||||
#endif
|
||||
|
||||
tpf->rd = rd;
|
||||
} while (++i, bits>>=1);
|
||||
@@ -327,16 +314,10 @@ static void TPFMode1(TrackPathFinder *tpf, TileIndex tile, int direction)
|
||||
tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
|
||||
rd = tpf->rd;
|
||||
|
||||
#ifdef DEBUG_TILE_PUSH
|
||||
dbg_push_tile(tile, tpf->the_dir);
|
||||
#endif
|
||||
if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
|
||||
!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
|
||||
TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
||||
}
|
||||
#ifdef DEBUG_TILE_PUSH
|
||||
dbg_pop_tile();
|
||||
#endif
|
||||
tpf->rd = rd;
|
||||
} while (bits != 0);
|
||||
}
|
||||
@@ -422,7 +403,8 @@ void FollowTrack(TileIndex tile, uint16 flags, byte direction, TPFEnumProc *enum
|
||||
|
||||
typedef struct {
|
||||
TileIndex tile;
|
||||
uint16 cur_length;
|
||||
uint16 cur_length; // This is the current length to this tile.
|
||||
uint16 priority; // This is the current length + estimated length to the goal.
|
||||
byte track;
|
||||
byte depth;
|
||||
byte state;
|
||||
@@ -445,8 +427,9 @@ typedef struct HashLink {
|
||||
} HashLink;
|
||||
|
||||
typedef struct {
|
||||
TPFEnumProc *enum_proc;
|
||||
NTPEnumProc *enum_proc;
|
||||
void *userdata;
|
||||
TileIndex dest;
|
||||
|
||||
byte tracktype;
|
||||
uint maxlength;
|
||||
@@ -457,7 +440,7 @@ typedef struct {
|
||||
uint nstack;
|
||||
StackedItem stack[256]; // priority queue of stacked items
|
||||
|
||||
uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFC0 = length, 0x3F = type
|
||||
uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFFC = length, 0x3 = dir
|
||||
TileIndex hash_tile[0x400]; // tiles. or links.
|
||||
|
||||
HashLink links[0x400]; // hash links
|
||||
@@ -475,7 +458,7 @@ static inline void HeapifyUp(NewTrackPathFinder *tpf)
|
||||
StackedItem si;
|
||||
int i = ++tpf->nstack;
|
||||
|
||||
while (i != 1 && ARR(i).cur_length < ARR(i>>1).cur_length) {
|
||||
while (i != 1 && ARR(i).priority < ARR(i>>1).priority) {
|
||||
// the child element is larger than the parent item.
|
||||
// swap the child item and the parent item.
|
||||
si = ARR(i); ARR(i) = ARR(i>>1); ARR(i>>1) = si;
|
||||
@@ -500,11 +483,11 @@ static inline void HeapifyDown(NewTrackPathFinder *tpf)
|
||||
|
||||
while ((j=i*2) <= n) {
|
||||
// figure out which is smaller of the children.
|
||||
if (j != n && ARR(j).cur_length > ARR(j+1).cur_length)
|
||||
if (j != n && ARR(j).priority > ARR(j+1).priority)
|
||||
j++; // right item is smaller
|
||||
|
||||
assert(i <= n && j <= n);
|
||||
if (ARR(i).cur_length <= ARR(j).cur_length)
|
||||
if (ARR(i).priority <= ARR(j).priority)
|
||||
break; // base elem smaller than smallest, done!
|
||||
|
||||
// swap parent with the child
|
||||
@@ -544,8 +527,11 @@ static bool NtpVisit(NewTrackPathFinder *tpf, TileIndex tile, uint dir, uint len
|
||||
// two tiles with the same hash, need to make a link
|
||||
// allocate a link. if out of links, handle this by returning
|
||||
// that a tile was already visisted.
|
||||
if (tpf->num_links_left == 0)
|
||||
if (tpf->num_links_left == 0) {
|
||||
DEBUG(ntp, 1) ("[NTP] no links left");
|
||||
return false;
|
||||
}
|
||||
|
||||
tpf->num_links_left--;
|
||||
link = tpf->new_link++;
|
||||
|
||||
@@ -575,8 +561,10 @@ static bool NtpVisit(NewTrackPathFinder *tpf, TileIndex tile, uint dir, uint len
|
||||
|
||||
/* get here if we need to add a new link to link,
|
||||
* first, allocate a new link, in the same way as before */
|
||||
if (tpf->num_links_left == 0)
|
||||
return false;
|
||||
if (tpf->num_links_left == 0) {
|
||||
DEBUG(ntp, 1) ("[NTP] no links left");
|
||||
return false;
|
||||
}
|
||||
tpf->num_links_left--;
|
||||
new_link = tpf->new_link++;
|
||||
|
||||
@@ -638,155 +626,239 @@ static const uint16 _is_upwards_slope[15] = {
|
||||
};
|
||||
|
||||
|
||||
#define DIAG_FACTOR 3
|
||||
#define STR_FACTOR 2
|
||||
|
||||
|
||||
static uint DistanceMoo(TileIndex t0, TileIndex t1)
|
||||
{
|
||||
const uint dx = abs(TileX(t0) - TileX(t1));
|
||||
const uint dy = abs(TileY(t0) - TileY(t1));
|
||||
|
||||
const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
|
||||
/* OPTIMISATION:
|
||||
* Original: diagTracks = max(dx, dy) - min(dx,dy);
|
||||
* Proof:
|
||||
* (dx-dy) - straightTracks == (min + max) - straightTracks = min + // max - 2 * min = max - min */
|
||||
const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */
|
||||
|
||||
return diagTracks*DIAG_FACTOR + straightTracks*STR_FACTOR;
|
||||
}
|
||||
|
||||
// These has to be small cause the max length of a track
|
||||
// is currently limited to 16384
|
||||
|
||||
static const byte _length_of_track[16] = {
|
||||
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0,
|
||||
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0
|
||||
};
|
||||
|
||||
// new more optimized pathfinder for trains...
|
||||
// Tile is the tile the train is at.
|
||||
// direction is the tile the train is moving towards.
|
||||
|
||||
static void NTPEnum(NewTrackPathFinder *tpf, TileIndex tile, uint direction)
|
||||
{
|
||||
uint bits, tile_org;
|
||||
int i;
|
||||
uint bits, tile_org, track;
|
||||
StackedItem si;
|
||||
FindLengthOfTunnelResult flotr;
|
||||
int estimation;
|
||||
|
||||
si.cur_length = 0;
|
||||
// Need to have a special case for the start.
|
||||
// We shouldn't call the callback for the current tile.
|
||||
si.cur_length = 1; // Need to start at 1 cause 0 is a reserved value.
|
||||
si.depth = 0;
|
||||
si.state = 0;
|
||||
|
||||
restart:
|
||||
if (IsTileType(tile, MP_TUNNELBRIDGE) && (_m[tile].m5 & 0xF0) == 0) {
|
||||
/* This is a tunnel tile */
|
||||
if ( (uint)(_m[tile].m5 & 3) != (direction ^ 2)) { /* ^ 2 is reversing the direction */
|
||||
/* We are not just driving out of the tunnel */
|
||||
if ( (uint)(_m[tile].m5 & 3) != direction || ((_m[tile].m5>>1)&6) != tpf->tracktype)
|
||||
/* We are not driving into the tunnel, or it
|
||||
* is an invalid tunnel */
|
||||
goto stop_search;
|
||||
flotr = FindLengthOfTunnel(tile, direction);
|
||||
si.cur_length += flotr.length;
|
||||
tile = flotr.tile;
|
||||
}
|
||||
}
|
||||
|
||||
// remember the start tile so we know if we're in an inf loop.
|
||||
tile_org = tile;
|
||||
goto start_at;
|
||||
|
||||
for(;;) {
|
||||
int track;
|
||||
// Get the next item to search from from the priority queue
|
||||
do {
|
||||
if (tpf->nstack == 0)
|
||||
return; // nothing left? then we're done!
|
||||
si = tpf->stack[0];
|
||||
tile = si.tile;
|
||||
|
||||
tile += TileOffsByDir(direction);
|
||||
HeapifyDown(tpf);
|
||||
// Make sure we havn't already visited this tile.
|
||||
} while (!NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length));
|
||||
|
||||
// too long search length? bail out.
|
||||
if (++si.cur_length >= tpf->maxlength) {
|
||||
DEBUG(misc,4) ("[NTP] cur_length too big\n");
|
||||
goto stop_search;
|
||||
// Add the length of this track.
|
||||
si.cur_length += _length_of_track[si.track];
|
||||
|
||||
callback_and_continue:
|
||||
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
|
||||
return;
|
||||
|
||||
direction = _tpf_new_direction[si.track];
|
||||
|
||||
start_at:
|
||||
// If the tile is the entry tile of a tunnel, and we're not going out of the tunnel,
|
||||
// need to find the exit of the tunnel.
|
||||
if (IsTileType(tile, MP_TUNNELBRIDGE)) {
|
||||
if ((_m[tile].m5 & 0xF0) == 0 &&
|
||||
(uint)(_m[tile].m5 & 3) != (direction ^ 2)) {
|
||||
/* This is a tunnel tile */
|
||||
/* We are not just driving out of the tunnel */
|
||||
if ( (uint)(_m[tile].m5 & 3) != direction || ((_m[tile].m5>>1)&6) != tpf->tracktype)
|
||||
/* We are not driving into the tunnel, or it
|
||||
* is an invalid tunnel */
|
||||
continue;
|
||||
flotr = FindLengthOfTunnel(tile, direction);
|
||||
si.cur_length += flotr.length * DIAG_FACTOR;
|
||||
tile = flotr.tile;
|
||||
// tile now points to the exit tile of the tunnel
|
||||
}
|
||||
}
|
||||
|
||||
// Not a regular rail tile?
|
||||
// Then we can't use the code below, but revert to more general code.
|
||||
if (!IsTileType(tile, MP_RAILWAY) || !IsPlainRailTile(tile)) {
|
||||
bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction];
|
||||
bits = (bits | (bits >> 8)) & 0x3F;
|
||||
if (bits == 0) goto stop_search;
|
||||
break;
|
||||
}
|
||||
// This is a special loop used to go through
|
||||
// a rail net and find the first intersection
|
||||
tile_org = tile;
|
||||
for(;;) {
|
||||
tile += TileOffsByDir(direction);
|
||||
|
||||
// regular rail tile, determine the tracks that are actually reachable.
|
||||
bits = _m[tile].m5 & _bits_mask[direction];
|
||||
if (bits == 0) goto stop_search; // no tracks there? stop searching.
|
||||
|
||||
// intersection? then we need to branch the search space,
|
||||
// can't handle that from here.
|
||||
if (KILL_FIRST_BIT(bits) != 0) break;
|
||||
|
||||
track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
||||
|
||||
// Check if this rail is an upwards slope. If it is, then add a penalty.
|
||||
// Small optimization here.. if (track&7)>1 then it can't be a slope so we avoid calling GetTileSlope
|
||||
if ((track & 7) <= 1 && (_is_upwards_slope[GetTileSlope(tile, NULL)] & (1 << track)) ) {
|
||||
// upwards slope. add some penalty.
|
||||
si.cur_length += 2;
|
||||
}
|
||||
|
||||
// railway tile with signals..?
|
||||
if (HasSignals(tile)) {
|
||||
byte m3;
|
||||
|
||||
m3 = _m[tile].m3;
|
||||
if (!(m3 & SignalAlongTrackdir(track))) {
|
||||
// if one way signal not pointing towards us, stop going in this direction.
|
||||
if (m3 & SignalAgainstTrackdir(track))
|
||||
goto stop_search;
|
||||
} else if (_m[tile].m2 & SignalAlongTrackdir(track)) {
|
||||
// green signal in our direction. either one way or two way.
|
||||
si.state |= 1;
|
||||
} else {
|
||||
// reached a red signal.
|
||||
if (m3 & SignalAgainstTrackdir(track)) {
|
||||
// two way red signal. unless we passed another green signal on the way,
|
||||
// stop going in this direction.
|
||||
// this is to prevent us from going into a full platform.
|
||||
if (!(si.state&1))
|
||||
goto stop_search;
|
||||
}
|
||||
// add some penalty since this path has a red signal on it.
|
||||
// only add this penalty max 2 times.
|
||||
if ((si.state & 6) != 4) {
|
||||
si.cur_length += 10;
|
||||
si.state += 2; // remember that we added penalty.
|
||||
}
|
||||
// too long search length? bail out.
|
||||
if (si.cur_length >= tpf->maxlength) {
|
||||
DEBUG(ntp,1) ("[NTP] cur_length too big");
|
||||
bits = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
if (tpf->enum_proc(tile, tpf->userdata, track, si.cur_length, &si.state))
|
||||
goto stop_search; // we should stop searching in this direction
|
||||
// Not a regular rail tile?
|
||||
// Then we can't use the code below, but revert to more general code.
|
||||
if (!IsTileType(tile, MP_RAILWAY) || !IsPlainRailTile(tile)) {
|
||||
// We found a tile which is not a normal railway tile.
|
||||
// Determine which tracks that exist on this tile.
|
||||
bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction];
|
||||
bits = (bits | (bits >> 8)) & 0x3F;
|
||||
|
||||
// Check that the tile contains exactly one track
|
||||
if (bits == 0 || KILL_FIRST_BIT(bits) != 0)
|
||||
break;
|
||||
|
||||
///////////////////
|
||||
// If we reach here, the tile has exactly one track.
|
||||
// tile - index to a tile that is not rail tile, but still straight (with optional signals)
|
||||
// bits - bitmask of which track that exist on the tile (exactly one bit is set)
|
||||
// direction - which direction are we moving in?
|
||||
///////////////////
|
||||
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
||||
si.cur_length += _length_of_track[si.track];
|
||||
goto callback_and_continue;
|
||||
}
|
||||
|
||||
// Regular rail tile, determine which tracks exist.
|
||||
bits = _m[tile].m5 & 0x3F;
|
||||
if (bits == 0)
|
||||
break; // None at all?
|
||||
|
||||
// Make sure that the tile contains exactly ONE track
|
||||
if (KILL_FIRST_BIT(bits) != 0) {
|
||||
// It contained many tracks,
|
||||
// but first, mask out the tracks that are not reachable
|
||||
bits &= _bits_mask[direction];
|
||||
break;
|
||||
}
|
||||
|
||||
track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
||||
si.cur_length += _length_of_track[track];
|
||||
|
||||
// Check if this rail is an upwards slope. If it is, then add a penalty.
|
||||
// Small optimization here.. if (track&7)>1 then it can't be a slope so we avoid calling GetTileSlope
|
||||
if ((track & 7) <= 1 && (_is_upwards_slope[GetTileSlope(tile, NULL)] & (1 << track)) ) {
|
||||
// upwards slope. add some penalty.
|
||||
si.cur_length += 4*DIAG_FACTOR;
|
||||
}
|
||||
|
||||
// railway tile with signals..?
|
||||
if (HasSignals(tile)) {
|
||||
byte m3;
|
||||
|
||||
m3 = _m[tile].m3;
|
||||
if (!(m3 & SignalAlongTrackdir(track))) {
|
||||
// if one way signal not pointing towards us, stop going in this direction.
|
||||
if (m3 & SignalAgainstTrackdir(track)) {
|
||||
bits = 0;
|
||||
break;
|
||||
}
|
||||
} else if (_m[tile].m2 & SignalAlongTrackdir(track)) {
|
||||
// green signal in our direction. either one way or two way.
|
||||
si.state |= 3;
|
||||
} else {
|
||||
// reached a red signal.
|
||||
if (m3 & SignalAgainstTrackdir(track)) {
|
||||
// two way red signal. unless we passed another green signal on the way,
|
||||
// stop going in this direction.
|
||||
// this is to prevent us from going into a full platform.
|
||||
if (!(si.state&1)) {
|
||||
bits = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!(si.state & 2)) {
|
||||
// Is this the first signal we see? And it's red... add penalty
|
||||
si.cur_length += 10*DIAG_FACTOR;
|
||||
si.state += 2; // remember that we added penalty.
|
||||
// Because we added a penalty, we can't just continue as usual.
|
||||
// Need to get out and let A* do it's job with
|
||||
// possibly finding an even shorter path.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
|
||||
return;
|
||||
}
|
||||
|
||||
// continue with the next track
|
||||
direction = _tpf_new_direction[track];
|
||||
assert(direction != 0xFF);
|
||||
|
||||
// safety check if we're running around chasing our tail... (infinite loop)
|
||||
if (tile == tile_org) {
|
||||
bits = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// continue with the next track
|
||||
direction = _tpf_new_direction[track];
|
||||
assert(direction != 0xFF);
|
||||
// There are no tracks to choose between.
|
||||
// Stop searching in this direction
|
||||
if (bits == 0)
|
||||
continue;
|
||||
|
||||
// check if we're running around chasing our tail... (infinite loop)
|
||||
if (tile == tile_org)
|
||||
goto stop_search;
|
||||
}
|
||||
////////////////
|
||||
// We got multiple tracks to choose between (intersection).
|
||||
// Branch the search space into several branches.
|
||||
////////////////
|
||||
|
||||
// if only one possible track to choose from, just continue
|
||||
if (KILL_FIRST_BIT(bits) == 0) {
|
||||
i = _new_track[FIND_FIRST_BIT(bits)][direction];
|
||||
// call the callback to check if we've reached the destination
|
||||
if (tpf->enum_proc(tile, tpf->userdata, i, si.cur_length, &si.state))
|
||||
goto stop_search; // we should stop searching in this direction.
|
||||
// Check if we've already visited this intersection.
|
||||
// If we've already visited it with a better length, then
|
||||
// there's no point in visiting it again.
|
||||
if (!NtpVisit(tpf, tile, direction, si.cur_length))
|
||||
continue;
|
||||
|
||||
// we should continue searching. determine new direction.
|
||||
direction = _tpf_new_direction[i];
|
||||
goto restart; // use tail recursion optimization.
|
||||
}
|
||||
|
||||
////////////////
|
||||
// We got multiple tracks to choose between (intersection).
|
||||
// Branch the search space into several branches.
|
||||
// Push each alternative on the stack.
|
||||
////////////////
|
||||
|
||||
// Increase recursion depth counter, and
|
||||
// Check so the depth is not too big.. to prevent enourmous slowdown.
|
||||
if (si.depth >= _patches.pf_maxdepth) {
|
||||
DEBUG(misc, 4) ("[NTP] depth too big\n");
|
||||
goto stop_search;
|
||||
}
|
||||
si.depth++;
|
||||
|
||||
// Check if we've already visited this intersection.
|
||||
// If we've already visited it with a better length, then
|
||||
// there's no point in visiting it again.
|
||||
if (NtpVisit(tpf, tile, direction, si.cur_length)) {
|
||||
// Push all possible alternatives that we can reach from here
|
||||
// onto the priority heap.
|
||||
// 'bits' contains the tracks that we can choose between.
|
||||
|
||||
// First compute the estimated distance to the target.
|
||||
// This is used to implement A*
|
||||
estimation = 0;
|
||||
if (tpf->dest != 0)
|
||||
estimation = DistanceMoo(tile, tpf->dest);
|
||||
|
||||
si.depth++;
|
||||
si.tile = tile;
|
||||
do {
|
||||
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
||||
si.priority = si.cur_length + estimation;
|
||||
|
||||
// out of stack items, bail out?
|
||||
if (tpf->nstack >= lengthof(tpf->stack)) {
|
||||
DEBUG(misc, 4) ("[NTP] out of stack\n");
|
||||
DEBUG(ntp, 1) ("[NTP] out of stack");
|
||||
break;
|
||||
}
|
||||
|
||||
tpf->stack[tpf->nstack] = si;
|
||||
HeapifyUp(tpf);
|
||||
} while ((bits = KILL_FIRST_BIT(bits)) != 0);
|
||||
@@ -795,54 +867,36 @@ restart:
|
||||
// so the code outside knows which path is better.
|
||||
// also randomize the order in which we search through them.
|
||||
if (si.depth == 1) {
|
||||
uint32 r = Random();
|
||||
assert(tpf->nstack == 2 || tpf->nstack == 3);
|
||||
if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track);
|
||||
if (tpf->nstack != 2) {
|
||||
byte t = tpf->stack[2].track;
|
||||
if (r&2) swap_byte(&tpf->stack[0].track, &t);
|
||||
if (r&4) swap_byte(&tpf->stack[1].track, &t);
|
||||
tpf->stack[2].first_track = tpf->stack[2].track = t;
|
||||
assert(tpf->nstack == 1 || tpf->nstack == 2 || tpf->nstack == 3);
|
||||
if (tpf->nstack != 1) {
|
||||
uint32 r = Random();
|
||||
if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track);
|
||||
if (tpf->nstack != 2) {
|
||||
byte t = tpf->stack[2].track;
|
||||
if (r&2) swap_byte(&tpf->stack[0].track, &t);
|
||||
if (r&4) swap_byte(&tpf->stack[1].track, &t);
|
||||
tpf->stack[2].first_track = tpf->stack[2].track = t;
|
||||
}
|
||||
tpf->stack[0].first_track = tpf->stack[0].track;
|
||||
tpf->stack[1].first_track = tpf->stack[1].track;
|
||||
}
|
||||
tpf->stack[0].first_track = tpf->stack[0].track;
|
||||
tpf->stack[1].first_track = tpf->stack[1].track;
|
||||
}
|
||||
|
||||
// Continue with the next from the queue...
|
||||
}
|
||||
|
||||
|
||||
stop_search:
|
||||
// Now continue searching from the intersection that has the lowest
|
||||
// cost.
|
||||
// Pop the lowest cost item from the priority heap.
|
||||
do {
|
||||
if (tpf->nstack == 0)
|
||||
return; // nothing left? then we're done!
|
||||
si = tpf->stack[0];
|
||||
tile = si.tile;
|
||||
HeapifyDown(tpf);
|
||||
|
||||
// First check if we've already visited the tile we're just about to continue at.
|
||||
// If we've already visited it, no point in continuing from there.
|
||||
// Then call the callback.
|
||||
} while (
|
||||
!NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length) || // already have better path to that tile?
|
||||
tpf->enum_proc(tile, tpf->userdata, si.track, si.cur_length, &si.state)
|
||||
);
|
||||
|
||||
direction = _tpf_new_direction[si.track];
|
||||
goto restart;
|
||||
}
|
||||
|
||||
|
||||
// new pathfinder for trains. better and faster.
|
||||
void NewTrainPathfind(TileIndex tile, byte direction, TPFEnumProc *enum_proc, void *data, byte *cache)
|
||||
void NewTrainPathfind(TileIndex tile, TileIndex dest, byte direction, NTPEnumProc *enum_proc, void *data)
|
||||
{
|
||||
NewTrackPathFinder tpf;
|
||||
|
||||
tpf.dest = dest;
|
||||
tpf.userdata = data;
|
||||
tpf.enum_proc = enum_proc;
|
||||
tpf.tracktype = 0;
|
||||
tpf.maxlength = _patches.pf_maxlength;
|
||||
tpf.maxlength = min(_patches.pf_maxlength * 3, 10000);
|
||||
tpf.nstack = 0;
|
||||
tpf.new_link = tpf.links;
|
||||
tpf.num_links_left = lengthof(tpf.links);
|
||||
|
Reference in New Issue
Block a user