(svn r3329) - Doc: Some documentation cleanups.

- Add: TracksOverlap() (from the map branch), TrackdirBitsToTrackBits(), DiagdirReachesTrackdirs(), DiagdirReachesTracks().
 - Fix: Infinite loop in the pathfinder introduces in r3321.
This commit is contained in:
matthijs
2005-12-21 13:53:44 +00:00
parent be01586049
commit 128317d3ec
2 changed files with 76 additions and 21 deletions

58
rail.h
View File

@@ -341,26 +341,36 @@ static inline Trackdir ReverseTrackdir(Trackdir trackdir) {
return _reverse_trackdir[trackdir];
}
/*
/**
* Maps a Track to the corresponding TrackBits value
*/
static inline TrackBits TrackToTrackBits(Track track) { return (TrackBits)(1 << track); }
/* Returns the Track that a given Trackdir represents */
/**
* Returns the Track that a given Trackdir represents
*/
static inline Track TrackdirToTrack(Trackdir trackdir) { return (Track)(trackdir & 0x7); }
/* Returns a Trackdir for the given Track. Since every Track corresponds to
/**
* Returns a Trackdir for the given Track. Since every Track corresponds to
* two Trackdirs, we choose the one which points between NE and S.
* Note that the actual implementation is quite futile, but this might change
* in the future.
*/
static inline Trackdir TrackToTrackdir(Track track) { return (Trackdir)track; }
/* Returns a TrackdirBit mask that contains the two TrackdirBits that
/**
* Returns a TrackdirBit mask that contains the two TrackdirBits that
* correspond with the given Track (one for each direction).
*/
static inline TrackdirBits TrackToTrackdirBits(Track track) { Trackdir td = TrackToTrackdir(track); return TrackdirToTrackdirBits(td) | TrackdirToTrackdirBits(ReverseTrackdir(td));}
/**
* Discards all directional information from the given TrackdirBits. Any
* Track which is present in either direction will be present in the result.
*/
static inline TrackBits TrackdirBitsToTrackBits(TrackdirBits bits) { return bits | (bits >> 8); }
/**
* Maps a trackdir to the trackdir that you will end up on if you go straight
* ahead. This will be the same trackdir for diagonal trackdirs, but a
@@ -424,14 +434,28 @@ static inline Trackdir DiagdirToDiagTrackdir(DiagDirection diagdir) {
return _dir_to_diag_trackdir[diagdir];
}
extern const TrackdirBits _exitdir_reaches_trackdirs[DIAGDIR_END];
/**
* Returns all trackdirs that can be reached when entering a tile from a given
* (diagonal) direction. This will obviously include 90 degree turns, since no
* information is available about the exact angle of entering */
static inline TrackdirBits DiagdirReachesTrackdirs(DiagDirection diagdir) { return _exitdir_reaches_trackdirs[diagdir]; }
/**
* Returns all tracks that can be reached when entering a tile from a given
* (diagonal) direction. This will obviously include 90 degree turns, since no
* information is available about the exact angle of entering */
static inline TrackBits DiagdirReachesTracks(DiagDirection diagdir) { return TrackdirBitsToTrackBits(DiagdirReachesTrackdirs(diagdir)); }
/**
* Maps a trackdir to the trackdirs that can be reached from it (ie, when
* entering the next tile. This
* entering the next tile. This will include 90 degree turns!
*/
extern const TrackdirBits _exitdir_reaches_trackdirs[DIAGDIR_END];
static inline TrackdirBits TrackdirReachesTrackdirs(Trackdir trackdir) { return _exitdir_reaches_trackdirs[TrackdirToExitdir(trackdir)]; }
/* Note that there is no direct table for this function (there used to be),
* but it uses two simpeler tables to achieve the result */
static inline TrackdirBits TrackdirReachesTrackdirs(Trackdir trackdir) { return _exitdir_reaches_trackdirs[TrackdirToExitdir(trackdir)]; }
/**
* Maps a trackdir to all trackdirs that make 90 deg turns with it.
@@ -594,6 +618,26 @@ static inline bool IsCompatibleRail(RailType enginetype, RailType tiletype)
return HASBIT(GetRailTypeInfo(enginetype)->compatible_railtypes, tiletype);
}
/**
* Checks if the given tracks overlap, ie form a crossing. Basically this
* means when there is more than one track on the tile, exept when there are
* two parallel tracks.
* @param bits The tracks present.
* @return Whether the tracks present overlap in any way.
*/
static inline bool TracksOverlap(TrackBits bits)
{
/* With no, or only one track, there is no overlap */
if (bits == 0 || KILL_FIRST_BIT(bits) == 0)
return false;
/* We know that there are at least two tracks present. When there are more
* than 2 tracks, they will surely overlap. When there are two, they will
* always overlap unless they are lower & upper or right & left. */
if ((bits == (TRACK_BIT_UPPER|TRACK_BIT_LOWER)) || (bits == (TRACK_BIT_LEFT | TRACK_BIT_RIGHT)))
return false;
return true;
}
void DrawTrackBits(TileInfo *ti, TrackBits track, bool earth, bool snow, bool flat);
void DrawTrainDepotSprite(int x, int y, int image, RailType railtype);
void DrawDefaultWaypointSprite(int x, int y, RailType railtype);