mirror of https://github.com/OpenTTD/OpenTTD
Codechange: Use arrays instead of vectors
parent
685cee5bf3
commit
e9d0255480
|
@ -32,6 +32,8 @@
|
|||
#include "table/clear_land.h"
|
||||
|
||||
#include "safeguards.h"
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
|
||||
/**
|
||||
* List of tree placer algorithm.
|
||||
|
@ -61,7 +63,7 @@ static const uint16_t EDITOR_TREE_DIV = 5; ///< Game editor tr
|
|||
static const double PHASE_DIVISOR = INT32_MAX / (M_PI * 2); ///< Valid values for the phase of blob harmonics are between 0 and Tau. we can get a value in the correct range from Random() by dividing the maximum possible value by the desired maximum, and then dividing the random value by the result.
|
||||
static const uint16_t GROVE_RADIUS = 16; ///< Maximum radius of tree groups.
|
||||
static const uint16_t GROVE_RESOLUTION = 16; ///< How many segments make up the tree group.
|
||||
|
||||
static const uint16_t GROVE_HARMONICS_COUNT = 4; ///< How many harmonics are used to generate the tree group.
|
||||
/**
|
||||
* Tests if a tile can be converted to MP_TREES
|
||||
* This is true for clear ground without farms or rocks.
|
||||
|
@ -193,18 +195,17 @@ struct BlobHarmonic
|
|||
* Creates a star-shaped[sic] polygon originating from (0, 0) as defined by the given harmonics.
|
||||
*
|
||||
* @param radius The maximum radius of the polygon. May be smaller, but will not be larger.
|
||||
* @param harmonics a std::vector of the harmonics data.
|
||||
* @param noOfSegments How many segments make up the polygon.
|
||||
* @param harmonics Harmonics data for the polygon.
|
||||
*/
|
||||
std::vector<Point> CreateStarShapedPolygon(const int radius, const std::vector<BlobHarmonic> harmonics, const int noOfSegments)
|
||||
std::array<Point, GROVE_RESOLUTION> CreateStarShapedPolygon(const int radius, const std::array<BlobHarmonic, GROVE_HARMONICS_COUNT> harmonics)
|
||||
{
|
||||
std::vector<Point> result;
|
||||
std::array<Point, GROVE_RESOLUTION> result;
|
||||
|
||||
float theta = 0;
|
||||
auto step = (M_PI * 2) / noOfSegments; //tau best circle constant
|
||||
auto step = (M_PI * 2) / GROVE_RESOLUTION; //tau best circle constant
|
||||
|
||||
//divide a circle into a number of equally spaced divisions
|
||||
for(int i = 0; i < noOfSegments; ++i)
|
||||
for(int i = 0; i < GROVE_RESOLUTION; ++i)
|
||||
{
|
||||
float deviation = 0;
|
||||
//add up the values of each harmonic at this segment
|
||||
|
@ -219,7 +220,7 @@ std::vector<Point> CreateStarShapedPolygon(const int radius, const std::vector<B
|
|||
Point vertex;
|
||||
vertex.x = cos(theta) * adjustedRadius;
|
||||
vertex.y = sin(theta) * adjustedRadius;
|
||||
result.push_back(vertex);
|
||||
result.at(i) = vertex;
|
||||
|
||||
//proceed to the next segment
|
||||
theta += step;
|
||||
|
@ -234,18 +235,18 @@ std::vector<Point> CreateStarShapedPolygon(const int radius, const std::vector<B
|
|||
* @param radius The maximum radius of the blob. May be smaller, but will not be larger.
|
||||
* @param noOfSegments How many segments make up the blob.
|
||||
*/
|
||||
std::vector<Point> CreateRandomStarShapedPolygon(const int radius, const int noOfSegments)
|
||||
std::array<Point, GROVE_RESOLUTION> CreateRandomStarShapedPolygon(const int radius, const int noOfSegments)
|
||||
{
|
||||
std::vector<BlobHarmonic> harmonics;
|
||||
std::array<BlobHarmonic, GROVE_HARMONICS_COUNT> harmonics;
|
||||
|
||||
// these values are ones i found in my testing that result in suitable-looking polygons that did not self-intersect and fit within a square of radius * radius dimensions.
|
||||
|
||||
harmonics.push_back(BlobHarmonic(radius / 2, Random() / PHASE_DIVISOR, 1));
|
||||
harmonics.push_back(BlobHarmonic(radius / 4, Random() / PHASE_DIVISOR, 2));
|
||||
harmonics.push_back(BlobHarmonic(radius / 8, Random() / PHASE_DIVISOR, 3));
|
||||
harmonics.push_back(BlobHarmonic(radius / 16, Random() / PHASE_DIVISOR, 4));
|
||||
harmonics.at(0) = BlobHarmonic(radius / 2, Random() / PHASE_DIVISOR, 1);
|
||||
harmonics.at(1) = BlobHarmonic(radius / 4, Random() / PHASE_DIVISOR, 2);
|
||||
harmonics.at(2) = BlobHarmonic(radius / 8, Random() / PHASE_DIVISOR, 3);
|
||||
harmonics.at(3) = BlobHarmonic(radius / 16, Random() / PHASE_DIVISOR, 4);
|
||||
|
||||
return CreateStarShapedPolygon(radius, harmonics, noOfSegments);
|
||||
return CreateStarShapedPolygon(radius, harmonics);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -281,7 +282,7 @@ bool IsPointInTriangle(const int x, const int y, Point vertex0, Point vertex1, P
|
|||
* @param y y.
|
||||
* @param polygon the polygon to check against, a std::vector of multiple Points.
|
||||
*/
|
||||
bool IsPointInStarShapedPolygon(int x, int y, std::vector<Point> polygon)
|
||||
bool IsPointInStarShapedPolygon(int x, int y, std::array<Point, GROVE_RESOLUTION> polygon)
|
||||
{
|
||||
for(int i = 0; i < polygon.size(); ++i)
|
||||
{
|
||||
|
@ -305,7 +306,7 @@ static void PlaceTreeGroups(uint num_groups)
|
|||
do {
|
||||
TileIndex center_tile = RandomTile();
|
||||
|
||||
std::vector<Point> grove = CreateRandomStarShapedPolygon(GROVE_RADIUS, GROVE_RESOLUTION);
|
||||
std::array<Point, GROVE_RESOLUTION> grove = CreateRandomStarShapedPolygon(GROVE_RADIUS, GROVE_RESOLUTION);
|
||||
|
||||
for (uint i = 0; i < DEFAULT_TREE_STEPS; i++) {
|
||||
IncreaseGeneratingWorldProgress(GWP_TREE);
|
||||
|
|
Loading…
Reference in New Issue