1
0
Fork 0

Change: Make tree placement at world generation look more organic (#13515)

Trees are now placed in irregular blob shapes instead of repetitive diamond shapes.

---------

Co-authored-by: Susan <su+git@angel-island.zone>
Co-authored-by: Peter Nelson <peter1138@openttd.org>
pull/13568/head
Su 2025-02-15 20:54:02 +00:00 committed by GitHub
parent fd2949d559
commit 4a37b6448f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 123 additions and 9 deletions

View File

@ -20,6 +20,7 @@
#include "sound_func.h"
#include "water.h"
#include "company_base.h"
#include "core/geometry_type.hpp"
#include "core/random_func.hpp"
#include "newgrf_generic.h"
#include "timer/timer_game_tick.h"
@ -178,6 +179,110 @@ static void PlaceTree(TileIndex tile, uint32_t r)
}
}
struct BlobHarmonic {
int amplitude;
float phase;
int frequency;
};
/**
* Creates a star-shaped polygon originating from (0, 0) as defined by the given harmonics.
* The shape is placed into a pre-allocated span so the caller controls allocation.
* @param radius The maximum radius of the polygon. May be smaller, but will not be larger.
* @param harmonics Harmonics data for the polygon.
* @param[out] shape Shape to fill with points.
*/
static void CreateStarShapedPolygon(int radius, std::span<const BlobHarmonic> harmonics, std::span<Point> shape)
{
float theta = 0;
float step = (M_PI * 2) / std::size(shape);
/* Divide a circle into a number of equally spaced divisions. */
for (Point &vertex : shape) {
/* Add up the values of each harmonic at this segment.*/
float deviation = std::accumulate(std::begin(harmonics), std::end(harmonics), 0.f, [theta](float d, const BlobHarmonic &harmonic) -> float {
return d + sinf((theta + harmonic.phase) * harmonic.frequency) * harmonic.amplitude;
});
/* Smooth out changes. */
float adjusted_radius = (radius / 2.f) + (deviation / 2);
/* Add to the final polygon. */
vertex.x = cosf(theta) * adjusted_radius;
vertex.y = sinf(theta) * adjusted_radius;
/* Proceed to the next segment. */
theta += step;
}
}
/**
* Creates a random star-shaped polygon originating from (0, 0).
* The shape is placed into a pre-allocated span so the caller controls allocation.
* @param radius The maximum radius of the blob. May be smaller, but will not be larger.
* @param[out] shape Shape to fill with polygon points.
*/
static void CreateRandomStarShapedPolygon(int radius, std::span<Point> shape)
{
/* Valid values for the phase of blob harmonics are between 0 and Tau. we can get a value in the correct range
* from Random() by dividing the maximum possible value by the desired maximum, and then dividing the random
* value by the result. */
static constexpr float PHASE_DIVISOR = static_cast<float>(INT32_MAX / M_PI * 2);
/* These values are ones found in testing that result in suitable-looking polygons that did not self-intersect
* and fit within a square of radius * radius dimensions. */
std::initializer_list<BlobHarmonic> harmonics = {
{radius / 2, Random() / PHASE_DIVISOR, 1},
{radius / 4, Random() / PHASE_DIVISOR, 2},
{radius / 8, Random() / PHASE_DIVISOR, 3},
{radius / 16, Random() / PHASE_DIVISOR, 4},
};
CreateStarShapedPolygon(radius, harmonics, shape);
}
/**
* Returns true if the given coordinates lie within a triangle.
* @param x X coordinate relative to centre of shape.
* @param y Y coordinate relative to centre of shape.
* @param v1 First vertex of triangle.
* @param v2 Second vertex of triangle.
* @param v3 Third vertex of triangle.
* @returns true if the given coordinates lie within a triangle.
*/
static bool IsPointInTriangle(int x, int y, const Point &v1, const Point &v2, const Point &v3)
{
const int s = ((v1.x - v3.x) * (y - v3.y)) - ((v1.y - v3.y) * (x - v3.x));
const int t = ((v2.x - v1.x) * (y - v1.y)) - ((v2.y - v1.y) * (x - v1.x));
if ((s < 0) != (t < 0) && s != 0 && t != 0) return false;
const int d = (v3.x - v2.x) * (y - v2.y) - (v3.y - v2.y) * (x - v2.x);
return (d < 0) == (s + t <= 0);
}
/**
* Returns true if the given coordinates lie within a star shaped polygon.
* Breaks the polygon into a series of triangles around the centre point (0, 0) and then tests the coordinates against each triangle until a match is found (or not).
* @param x X coordinate relative to centre of shape.
* @param y Y coordinate relative to centre of shape.
* @param shape The shape to check against.
* @returns true if the given coordinates lie within the star shaped polygon.
*/
static bool IsPointInStarShapedPolygon(int x, int y, std::span<Point> shape)
{
for (auto it = std::begin(shape); it != std::end(shape); /* nothing */) {
const Point &v1 = *it;
++it;
const Point &v2 = (it == std::end(shape)) ? shape.front() : *it;
if (IsPointInTriangle(x, y, v1, v2, {0, 0})) return true;
}
return false;
}
/**
* Creates a number of tree groups.
* The number of trees in each group depends on how many trees are actually placed around the given tile.
@ -186,21 +291,30 @@ static void PlaceTree(TileIndex tile, uint32_t r)
*/
static void PlaceTreeGroups(uint num_groups)
{
static constexpr uint GROVE_SEGMENTS = 16; ///< How many segments make up the tree group.
static constexpr uint GROVE_RADIUS = 16; ///< Maximum radius of tree groups.
/* Shape in which trees may be contained. Array is here to reduce allocations. */
std::array<Point, GROVE_SEGMENTS> grove;
do {
TileIndex center_tile = RandomTile();
for (uint i = 0; i < DEFAULT_TREE_STEPS; i++) {
uint32_t r = Random();
int x = GB(r, 0, 5) - 16;
int y = GB(r, 8, 5) - 16;
uint dist = abs(x) + abs(y);
TileIndex cur_tile = TileAddWrap(center_tile, x, y);
CreateRandomStarShapedPolygon(GROVE_RADIUS, grove);
for (uint i = 0; i < DEFAULT_TREE_STEPS; i++) {
IncreaseGeneratingWorldProgress(GWP_TREE);
if (cur_tile != INVALID_TILE && dist <= 13 && CanPlantTreesOnTile(cur_tile, true)) {
PlaceTree(cur_tile, r);
}
uint32_t r = Random();
int x = GB(r, 0, 5) - GROVE_RADIUS;
int y = GB(r, 8, 5) - GROVE_RADIUS;
TileIndex cur_tile = TileAddWrap(center_tile, x, y);
if (cur_tile == INVALID_TILE) continue;
if (!CanPlantTreesOnTile(cur_tile, true)) continue;
if (!IsPointInStarShapedPolygon(x, y, grove)) continue;
PlaceTree(cur_tile, r);
}
} while (--num_groups);